
1 

 

Using Python to Read HDF5 files from the Global 
Precipitation Measurement (GPM) mission 

The NASA Goddard Precipitation Processing System, http://pps.gsfc.nasa.gov  
Written by Owen.Kelley@nasa.gov 
Updated: 22 June 2015 

1. Purpose 

 The Global Precipitation Measurement (GPM) core satellite carries a radar and a passive 
microwave instrument that has been in earth orbit since February 2014.  In addition to generating 
data products from these two instruments, the Precipitation Processing System (PPS) at NASA 
Goddard generates multi-satellite precipitation data products.  The GPM standard products are 
written the HDF5 file format, and to quote the Preface of Collette (2013), "Over the past several 
years, Python has emerged as a credible alternative to scientific analysis environments like IDL 
or Matlab."  Python is a programming language that can access HDF5 files if the optional h5py 
module is installed, as described in Collette's 2013 book, Python and HDF5.  This document 
describes a short Python program developed at PPS to help researchers take a first look at the 
GPM mission's HDF5 files. 

 The sample Python program described in this document can be downloaded from the PPS 
website.   This sample program illustrates how to read GPM HDF5 data into Python and a simple 
way to display these data after they are read.  This Python program is intended to work on Linux, 
Mac OS X, and Windows 7 systems that have Python version 2.7 install on them.  The numpy, 
matplotlib, and h5py modules must be installed in your copy of Python for the sample Python 
program to work. 

 Before proceeding with this document, you may wish to consider if Python is the best 
method for you to read and display GPM HDF5 files.  Three of the ways to access GPM HDF5 
files include the following: writing a program in a low-level language (C or FORTRAN), write a 
program in a high-level language (IDL, Matlab, or Python), or use the point-and-click graphical 
interface of a Geographic Information System (GIS).  The advantage of a high-level language is 
that you don't have to write as many lines of code as is required with a low-level language.  
Among the high-level languages, the amount of code that must be written is comparable, but 
ease of installation varies.  High-level languages for which you purchase a license (i.e., IDL and 
Matlab) tend to be easy to install and have tech support if you run into problems.  Open-source 
languages (i.e., Python) can be difficult to install and have limited tech support. This document 
can only provide a few hints about installing Python on various platforms and some of these 
hints may soon become out-of-date, due to the shifting nature of Python and Python modules. 

 In particular, many online sources warn against trying to install Python under various 
version of Microsoft Windows because so many installation problems crop up.  Even if you are 
able to figure out how to install the Python modules you need on a Windows system after a few 
days of work, the next time you need to install Python, you may need to work through a new set 
of problems.  Just because you find a way to install Python and the required modules under 



2 

 

Windows that doesn't mean that your colleagues, with slightly different Windows systems or a 
different set of already-installed applications will also be able to discover a way to install Python 
and those modules on their Windows system. 

 In other words, if you are already have a working copy of Python installed on your 
computer and some Python programming experience, then this document may be useful to you.  
For more information about GPM, please visit the science team's website (http://pmm.nasa.gov) 
or read Hou et al. (2014). 

2. Installation 

 For Linux or Mac users, determine if you have Python 2.7 installed on your machine by 
typing "python" on the command line.  For Windows users, type "python" in the search field of 
your start menu.  If you do not have Python installed, then would need to install it plus three 
Python modules before you would be able to run the sample Python program for reading GPM 
HDF5 files.  These three Python modules are numpy, matplotlib, and h5py.  The rest of this 
section provides a few tips about installing Python on Windows 7 systems or on Linux and Mac 
systems.  There is no guarantee that these tips will enable you to install Python or these Python 
modules.  In fact, you could harm your system by trying to install Python and these modules.  
Please consult your system administrator before following any of the suggestions below. 

2a. Windows 7: Installing Python language and required Python modules 

 To give a flavor of what you are up against if you want to try to access HDF5 files with 
Python under Windows, here is what occurred on our test machine in June of 2015.  None of the 
following four Python bundles could be installed on our test machine: Anaconda, Pythonxy, 
winpython, or enthought.  Even installing pure Python failed, unless the following things were 
done: (1) Python had to be installed in the default directory of C:\Python27 and (2) the files that 
ESRI's ArcGIS had placed in C:\Python27 had to be deleted before doing a fresh Python install 
from http://www.python.org. 

 After trial and error on each stage, the following steps worked on our Windows 7 machine 
in June of 2015.  The steps are listed here in case they might be at least partially relevant to some 
other user's machines.  The following list of steps evolved from the list in Glipin (2013). 

 (1) Install pure Python, version 2.7.  From http://www.python.org, download the 
python2.7.10.msi Microsoft Software Installer (MSI) file for 64-bit window.  Run that 
executable by double click in it.  Install it in the default location presented, which is 
C:\Python27.  After installation completes, looking in the C:\Python27\Scripts folder to verify 
that this folder includes a file called easy_install.exe because this executable is essential for 
subsequent steps. 

 (2) Add Python to your system's "Path" environment variable.  To do this under Windows 
7, click on Start and then right click on  "Computer".  Select Properties from the window that 
pops up.  Click on Advanced on the left hand column.  Click on the Environment Variables 
button.  Edit the system "Path" to begin with the phrase "C:\Python27;C:\Python27\Scripts;". 



3 

 

 (3) Verify that python itself is working.  To do this, open a Microsoft Windows 
"Command" window, which is a window that has a command line that allows you to execute 
DOS commands.  To open a command window, go to the Start menu and type "command" or 
"cmd.exe" in the search field.  In the list of search results, click on "Command Prompt".  In any 
directory, you should be able to type "python" or "python.exe" in the DOS prompt and Python 
2.7 should start up.  "python.exe" it located in C:\Python27\python.exe", but you added that 
directory to your Path environment variable in the previous step. 

 (4) Install Microsoft Visual C++ 9.0 from http://aka.ms.vcpython27 .  This means 
downloading VCForPython27.msi and double clicking on it to install.  Visual C++ is necessary 
in order for the Python installer to combine C code as part of the installation of the matplotlib 
Python module.  The Python installer is unable to install Visual C++, and that is why you must 
do so yourself. 

 (5a) Install the Python math module, known as numpy, using in Windows "Command" 
window.  Use "pip install numpy" on the DOS command line.  Unfortunately, one of the steps of 
installing numpy can take an hour, during which time you will get no feedback prior to the 
installation completing successfully.  Verify that numpy installed successfully by typing "import 
numpy" in Python. 

 (5b) Install the Python plotting module, known as matplotlib.  Use "pip install matplotlib".  
This will take under one minute.  Verify that the matplotlib Python module installed successfully 
by typing "import matplotlib" in Python. 

 (5c) Install the Python HDF5 module, known as h5py.  You may want to type "easy_install 
h5py" because "pip install h5py" fails in our tests. Verify that the h5py Python module installed 
successfully by typing "import h5py" in Python. 

 A few notes about working in Windows: To edit a text file in Windows 7 command prompt, 
use "start notepad filename" for a file created on a windows system or "start wordpad filename" 
for a file created on a Linux system.  To get a directory listing use "dir" instead of Unix "ls". 

2b. Linux and Mac OS X: Installing Python language and required Python modules 

 On Linux and Mac systems, Python 2.6 or Python 2.7 may already be installed on your 
system.  Verify that you have the numpy, matplotlib, and h5py modules installed, and if not, 
install them. 

2b. Obtain the Python program and sample HDF5 files 

 To obtain the example program and sample HDF5 files, visit the PPS FTP site: 
ftp://gpmweb2.pps.eosdis.nasa.gov/pub/THOR/python and download gpmPython.zip .  On a 
Linux or Mac system type "unzip –qq gpmPython.zip" to extract the files.  On a Windows 
system, right click on the *.zip file and select "extract files".  Below are the contents of the 
gpmPython.zip file: 

2A.GPM.DPR.V5.20140409-S190631-E191227.000640.V03B.subset.HDF5 
2A.GPM.GMI.GPROF.20140409-S190623-E191330.000640.V03C.subset.HDF5 
3B-HHR.MS.MRG.3IMERG.20140409-S190000-E192959.1140.V03D.HDF5 
gpm.py 
gpmPythonNotes.pdf 
 



4 

 

The files in the *.zip file may be described as follows. The sample Python program is called 
gpm.py.  Two of the HDF5 files are a single-instrument rainfall estimate from the main GPM 
instruments: the Dual-frequency Precipitation Radar (DPR) and the passive microwave 
radiometer called the GPM Microwave Imager (GMI) (Hou et al. 2014).  To keep the *.zip file 
from becoming too large, the DPR and GMI files included in it are subsets of the original HDF5 
files in the GPM archive.  These subsets are geographically smaller (they contain less than a full-
orbit of data) and they contain only a sample of the variables in the archived files.  Incidentally, 
these two subsets were generated using the publically available subset feature of the PPS data 
ordering system called STORM (http://storm.pps.eosdis.nasa.gov).  The third HDF5 file included 
in the *.zip file is an example of the IMERG multi-satellite precipitation data product.  The 
IMERG product may be the most widely used GPM data product. For a 30-minute period, it 
provides average rainfall rates estimates that cover the globe with grid boxes 0.1 by 0.1 degree in 
size.  The IMERG HDF5 file and the two single-instrument HDF5 files were chosen because 
they contain observations of Tropical Cyclone Ita approaching Australia at 1908 UTC on 9 April 
2014. 

 Once you have finished running the example program on the sample HDF5 files, you may 
wish to download other GPM HDF5 files from the PPS archive.  Before doing so, register your 
email address with PPS by going to this URL: http://registration.pps.eosdis.nasa.gov/ .   To 
download Realtime GPM HDF5 files, go the ftp://jsimpson.pps.eosdis.nasa.gov/data/ using a 
web browser or using some other FTP client such as the Linux "ftp" command.  Type in your 
just-registered email address when prompted for a username and password.  To download 
Production GPM HDF5 files, go to  ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/ . As with 
Realtime files, type in your just-registered email address when prompted for a username and 
password. 

3. Running the Python program 

 Start a Python 2.7 session. 

 Load the sample program as a Python module typing "import gpm".  The Python source file 
for this program is the gpm.py text file that you extracted from the gpmPython.zip file that you 
downloaded from the PPS website, as described in the previous section.  Since this is Python, the 
gpm.py source file is text.  On a Linux or Mac system, you can use the "vi" text editor to 
examine the contents of gpm.py and on a Windows system, you can use WordPad. 

 Once you have loaded the "gpm" module, you can use the Python help( ) function to obtain 
information about methods available to you from that module.  Allowing for variations that may 
occur as gpm.py continues to be developed at PPS, the output of "help(gpm)" will look 
something like the following: 

NAME 
    gpm 
 
FILE 
    /.../python/gpm.py 
 



5 

 

DESCRIPTION 
    gpm.py is a Python program written by PPS to provide an introduction 
    to reading the HDF5 files from the Global Precipitation Mission(GPM). 
    Documentation for this Python program is available one the PPS 
    homepage, http://pps.gsfc.nasa.gov . 
 
FUNCTIONS 
    listContents(fileName, outputFile=None) 
        Obtain a text list of the variables in an HDF5 file. 
     
    plotGrid(grid) 
     
    plotSwath(swath, swathRange) 
     
    readGrid(fileName, varName, grid) 
     
    readSwath(fileName, varName, swath) 
     
    testRun() 
        Run this function to test some of the read and display functions 
        in this Python module. 

 

The Python interrogation function dir( ) provides similar, but more concise information about the 
gpm module when you type "dir(gpm)" at the Python prompt. 

 Using a text editor, examine the contents of the testRun( ) function near the bottom of the 
gpm.py Python source file.  You can pick and choose commands from testRun( ) remembering to 
prefix "gpm" on any function name.  For example, to run the readSwath( ) function, you would 
type "gpm.readSwath(fileName,varName,swath)" on the Python command line after defining the 
required input variables fileName and varName.  Alternatively, one can just run the entire suite 
of tests by typing "gpm.testRun( )" on the Python command line.  When  a python plot window 
pops up, dismiss it in order to pass on to the next test.  At this time, three display windows will 
pop-up when you type gpm.testRun( ) on the Python command line. 

 If you want to modify lines of code in gpm.py, you can do so with a text editor.  Then to 
run the modified version of gpm.py, type "reload(gpm)" on the Python command line. 

 The sample program contains Python functions to read and display swath and grid files 
containing GPM HDF5 data.  The sample program also contains a function for creating a list of 
all variables inside of an HDF5 file.  We describe these in turn. 

 A swath file generally contains data that was collected during a single orbit of a satellite.  
Each pixel observed by the satellite is associated with a latitude and longitude value.  For this 
reason, one generally reads a data variable plus the associated latitude and longitude variables.  
The gpm.readSwath( ) function in the sample program reads these three variables and returns 
them in a Python dictionary called "swath".  The swath dictionary is then passed to the 
gpm.plotSwath( ) function.  The images generated from the GMI and DPR swath files are shows 
in Fig. 1. 

 



6 

 

(a)  (b)  

Fig. 1. Python displays of GPM single-instrument HDF5 files created by the 
gpm.plotSwath( ) function in the sample program gpm.py. (a) GMI surface precipitation 
rate (millimeters per hour).  (b) DPR estimated-surface precipitation rate (mm h-1). 

 

 A grid file generally contains rectangular grids that cover the whole globe's longitude 
(180°E to 180°W) and covers all or part of the globe's latitude (i.e., 70°S to 70°N or 90°S to 
90°N) with each grid cell having a fixed size in degrees latitude and longitude.  The 
gpm.readGrid( ) function reads a specified grid variable and gpm.plotGrid( ) displays it 
graphically. 

 

 

 

Fig. 2. Python display of the GPM multi-satellite product called IMERG, created by the 
gpm.plotGrid( ) function in the sample program gpm.py.  The display is the base-10 
logarithm of 30-minute averaged rainfall rate. 

 

 The GPM file specifications give you the names of variables in GPM HDF5 files.  To 
access them in Python (or in IDL or Matlab for that matter), it can be helpful to know the 



7 

 

absolute path to the variable.  The GPM file specification is available as a PDF file from the PPS 
website, http://pps.gsfc.nasa.gov.  For example in a 1C-GMI HDF5 file, latitude is stored in a 
variable whose absolute path within the HDF5 file is "/S1/Latitude".  To provide a list of the 
absolute path for all datasets in an HDF5 file, you can use the gpm.listContents( ) function in the 
sample Python program gpm.py.  If you provide gpm.listContents( ) with only one argument (the 
name of the HDF5 file to be examined), then the list of variables will be printed to the screen.  If 
you provide gpm.listContents( ) with two arguments (the HDF5 file to be examined and a name 
for an output text file), then the list of variables will be printed to the output filename provided.   
Below is what is the list of contents that is printed to the output file (or to the screen) when you 
give gpm.listContents( ) the name of an IMERG HDF5 grid file. 

 

file: 3B-HHR.MS.MRG.3IMERG.20140409-S190000-E192959.1140.V03D.HDF5 
 
/Grid GridHeader attribute: 
BinMethod=ARITHMETIC_MEAN; 
Registration=CENTER; 
LatitudeResolution=0.1; 
LongitudeResolution=0.1; 
NorthBoundingCoordinate=90; 
SouthBoundingCoordinate=-90; 
EastBoundingCoordinate=180; 
WestBoundingCoordinate=-180; 
Origin=SOUTHWEST; 
 
/Grid/IRkalmanFilterWeight  int16(3600, 1800) 
/Grid/HQprecipSource  int16(3600, 1800) 
/Grid/lon  float32(3600,) 
/Grid/precipitationCal  float32(3600, 1800) 
/Grid/precipitationUncal  float32(3600, 1800) 
/Grid/lat  float32(1800,) 
/Grid/HQprecipitation  float32(3600, 1800) 
/Grid/probabilityLiquidPrecipitation  int16(3600, 1800) 
/Grid/HQobservationTime  int16(3600, 1800) 
/Grid/randomError  float32(3600, 1800) 
/Grid/IRprecipitation  float32(3600, 1800) 
 
Fig. 3. The list of variables in the IMERG HDF5 file as shown in the text file output 
generated by the gpm.listContents( ) function of the gpm.py Python program. 

4. Some useful Python commands 

 Once you know the full path to the HDF5 variable that you want to read, actually reading it 
in Python take just two lines of code.  For example, to read the GMI surface precipitation 
estimate from an HDF5 file, you would open the file and read the data like this, if the name of 
the HDF5 file was stored in the Python string called fileName : 

fileHandle = h5py.File( fileName, 'r' ) 
data = fileHandle[ '/S1/surfacePrecipitation' ] 



8 

 

 

It is temping to think of the objects, like the data  object just read, as arrays of the sort created 
by Python's numpy module.  This analogy, however, is imperfect as Collette (2013, Chap. 3) 
explains.  It is true that many of the standard numpy functions will work on the objects read from 
HDF5 files.  For example, you can show the data  object's dimensions or print out the maximum 
and minimum values using numpy functions: 

data.shape 
numpy.amin( data ) 
numpy.amax( data ) 
numpy.median( data ) 
numpy.mean( data ) 

 

However, if you type just the object name on the interactive Python prompt, you will see that it is 
really an HDF object, not a numpy array... 

<HDF5 dataset "surfacePrecipitation": shape (229, 221), type "<f4"> 
 

...or if you type "type(data)" it's type will be <class 'h5py.highlevel.Dataset'>.   If you are doing 
simple operations, you usually don't need to worry about this numpy-array vs. HDF5-dataset 
distinction.  If you subset an HDF5 dataset, you obtain a pure numpy array, but you might not 
notice the change.  A subset operation of taking every tenth element of an HDF5 dataset will 
result in an object with the type of a numpy array.  In other words, the Python command "type( 
data[ ::10, ::10  ] )" returns <type 'numpy.ndarray'>. 

 To display a swath on a map, one needs to know the latitude and longitude values as well as 
the data values.  For this reason, the gpm.readSwath( ) function of the gpm.py Python program 
stores these three variables in a dictionary.  If one had read in data, lat, and lon, one could create 
such a dictionary oneself by typing the following Python command: 

swath = { 'lat': lat, 'lon': lon, 'data': data } 
 

You would access one of the element of the swath  dictionary, such as the data  element, with 
the following syntax: 

swath['data'] 
 

Another common operation that researchers perform on data read from GPM HDF5 files is to see 
what fraction of a variable exceeds a particular threshold.  For example, you might wonder what 
fraction of observations were determined to have zero rain rates and what fraction of 
observations had heavy rain of 10 millimeters an hour.  The following two Python statements 
calculate such fractions. 

print 'fraction of elements equal to 0 ' \ 
  1.0* numpy.sum( numpy.equal( data, 0 ) ) / numpy.size(data) 
 
print 'fraction of elements greater than or equal to 10 ' \ 
  1.0* numpy.sum( numpy.greater_equal( data, 10 ) ) / numpy.size(data) 

 



9 

 

References 

Collette, A., 2013: Python and HDF5. O'Reilly Media, Inc. [Available in hardcopy or through 
http://safaribooksonline.com] 

Gilpin, A., 7 July 2013: Setting up Python and easy_install on Windows 7, blog post on the 
ADEsquared blog.  [Accessed online June 2015 at https://adesquared.wordpress.com] 

Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. 
Nakamura, and T. Iguchi, 2014: The Global Precipitation Measuring Mission. Bulletin 
American Meteorological Society, May 2014, 701722. 

Huffman, G. J., Bolvin, D. T., D. Braithwaite, K. Hsu, R. Joyce, and P. Xie, 2014: NASA Global 
Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), 
Algorithm Theoretical Basis Document (ATBD). https://storm-
pps.gsfc.nasa.gov/storm/IMERG_ATBD_V4.pdf . 

Lutz, M., 2013: Learning Python, 5th edition. O'Reilly Media, Inc. [Available in hardcopy or 
through http://safaribooksonline.com] 

PPS, 2015: "GPM File Specification", NASA.  [Available online at 
ftp://gpmweb2.pps.eosdis.nasa.gov/pub/GPMfilespec/filespec.GPM.V1.pdf ] 

 

Related Websites 

http://matplotlib.org 

http://pmm.nasa.gov 

http://pps.gsfc.nasa.gov 

http://storm.pps.eosdis.nasa.gov 

http://www.h5py.org 

http://www.numpy.org 

http://www.python.org 

 

 


